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We generalize the hydrodynamic lattice gas model to include arbitrary numbers of particles moving in each
lattice direction. For this generalization we derive the equilibrium distribution function and the hydrodynamic
equations, including the equation of state and the prefactor of the inertial term that arises from the breaking of
Galilean invariance in these models. We show that this prefactor can be set to unity in the generalized model,
thereby effectively restoring Galilean invariance. Moreover, we derive an expression for the kinematic viscos-
ity, and show that it tends to decrease with the maximum number of particles allowed in each direction, so that
higher Reynolds numbers may be achieved. Finally, we derive expressions for the statistical noise and the
Boltzmann entropy of these models.@S1063-651X~96!08612-6#

PACS number~s!: 05.20.Dd, 05.50.1q
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I. LATTICE GASES

Lattice gas automata~LGA! are a class of dynamical sys
tems in which particles move on a lattice in discrete tim
steps. If the collisions between the particles conserve m
and momentum, and the lattice is sufficiently symmetric,
coarse-grained behavior of the system can be shown to
that of a viscous fluid in the appropriate scaling limit@1–4#.
Used as an algorithm for simulating hydrodynamics,
method has the virtues ofexact conservation laws, and o
unconditionalnumerical stability.

In a typical LGA, there is an association between t
lattice vectors and the particles at each site. If there arn
lattice vectors, then the state of the site is represented bn
bits. Each bit represents the presence or absence of a pa
in the corresponding direction. At each time step, a part
propagates along its corresponding lattice vector and t
collides with other arriving particles at the new site.~Note
that rest particles can be subsumed into this scheme by
sociating them with null lattice vectors.! The collisions are
required to conserve particle mass and momentum.

Relevant dimensionless quantities of a LGA are
Knudsen number Kn defined as the ratio of the mean
path to the characteristic length scale; the Strouhal num
Sh defined as the ratio of the mean free time to the cha
teristic time scale; the Mach numberM defined as the ratio
of the characteristic velocity to the speed of sound; the R
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nolds number, Re;M /Kn; and the fractional variation o
density from its average value,dr/r. Hydrodynamic behav-
ior @5# is attained in the limit as Kn and Sh go to zer
Viscoushydrodynamics@5# is attained when Sh;Kn2 in this
limit. Incompressibleviscous hydrodynamics@6# is then at-
tained when we also haveM;Kn so that Re;O(1), and
dr/r;Kn2.

The Chapman-Enskog procedure is a perturbation exp
sion in the above-described asymptotic ordering. For a L
whose collisions conserve mass and momentum on a la
of sufficient symmetry~quantified below!, the local equilib-
rium distribution function can be shown to be Fermi-Dirac
nature@2–4#. The Chapman-Enskog procedure can then
used to compute the correction to this Fermi-Dirac distrib
tion and thereby show@1–4# that the pressureP and the
momentum densityu obey the following equations in the
asymptotic limit:

“•u50,

]u

]t
1
g~r!

r
u•“u52“P1n~r!¹2u,

wherer is the fluid density~a constant in this limit!. The
analysis also yields expressions for the functionsg(r) and
n(r), and an equation of state forP. In particular, the form
of these equations, the equation of state, and the expres
for the functiong(r) depend only on the fact that mass a
momentum are conserved—and are the only thin
conserved—by the collisions. The expression for the visc
ity n(r) depends on the details of the collision rules use

Since the fluid densityr is a constant in the asymptoti
limit, the factorsg(r) and n(r) are also constants. As ha
4137 © 1997 The American Physical Society



e
re
th
th

o
s

h
in

re
ti

si-
-

n

.
to
se
m

t
ol-
e
ta

ce
n
in
er
a
s
i

A
for
ys-

lat-
ed
his
al-

o
de-

he
or
r, it
re-
d,
ost

the
l of
es-
n-
ty,

r of
or

f
m

tion

ns
xi-
ble
ion
me
ble-

s are

4138 55BOGHOSIAN, YEPEZ, ALEXANDER, AND MARGOLUS
been noted, the latter is the fluid viscosity. The presence
the former is reflective of a breaking of Galilean invarianc
due to the fact that the lattice itself constitutes a prefer
Galilean frame of reference. For a single-phase LGA,
former factor can easily be scaled away by redefining
momentum density and pressure as

U[g~r!u

and

P[g~r!P,

whereu and P are those measured in the simulation. F
compressible flow, or for multiphase flow with interface
however, the presence of theg(r) factor is problematic, and
various techniques have been proposed to remove it. It
been shown that this can be done by judiciously violat
semidetailed balance in the collision rule@7#, or by adding
many rest particles at each site@8#.

The unconditional stability of the lattice gas procedu
arises from a requirement that the collisions satisfy a sta
tical reversibility condition known assemidetailed balance
~SDB!. The collision process is fully specified by the tran
tion matrix A(s→s8), which is the probability that the in
coming states will result in the outgoing states8. Since
collisions must result in some outgoing state, conservatio
probability requires that

(
s8

A~s→s8!51. ~1.1!

SDB is then the condition that

(
s
A~s→s8!51. ~1.2!

@Note that the condition of detailed balance ~DB!,
A(s→s8)5A(s8→s), implies that of SDB, but not vice
versa; that is, SDB is a weaker condition than DB.# From
SDB, it is possible to prove anH theorem, from which fol-
lows the unconditional stability of the lattice gas algorithm

An important limitation of the lattice gas procedure has
do with the statistical noise associated with the coar
grained averaging that is necessary to get the hydrodyna
quantities that obey the above fluid equations. Forn bits per
site, and for coarse-grained averages over blocks ofN sites,
the noise is of order;1/AnN. For some applications—mos
notably the simulation of complex fluids—a certain contr
lable amount of noise is actually desirable because it is
sential to the physics; for simple fluid dynamics compu
tions, on the other hand, the noise is a nuisance.

II. LATTICE BOLTZMANN EQUATIONS

Because of their noise and lack of Galilean invarian
LGA’s have been replaced by lattice Boltzmann equatio
~LBE! for many hydrodynamics applications of interest
recent years@9#. These methods keep track only of an av
aged occupation number of particles in each direction at e
site. Moreover, the collision operator most often used i
simple relaxation to a noiseless equilibrium, thereby elim
of
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nating the statistical fluctuations that are inherent in the LG
method. This means that in complex fluid applications
which statistical fluctuations are an essential part of the ph
ics, they have to be reintroduced artificially@10#.

For a lattice Boltzmann equation corresponding to a
tice gas with only one bit per lattice vector, this real-valu
distribution function is bounded between zero and one. T
need not be the case, however, and the LBE procedure
lows one to tailor the equilibrium distribution function t
satisfy certain desiderata. Among these is the ability to
mand Galilean invariance@g(r)51# @11#.

At the same time, the LBE method gives up two of t
principal advantages of LGA’s: Due to the roundoff err
inherent in manipulations of real numbers on a compute
no longer maintains the conservation laws exactly. Mo
over, LBE’s are no longer unconditionally stable; indee
they are subject to a variety of numerical instabilities, m
of which are not well understood.

III. INTEGER LATTICE GAS AUTOMATA

In this paper, we investigate a simple generalization of
lattice gas concept that can be used to control the leve
statistical fluctuations—reducing it if desired, but not nec
sarily eliminating it altogether—while maintaining the co
servation laws exactly, preserving unconditional stabili
and allowing for Galilean invariance.

The use of a single bit per each ofn directions to repre-
sent the state of a given lattice site means that the numbe
particles moving along any lattice direction is either zero
one. We generalize this by allowing for up toL bits per
direction, for a total ofnL bits per site, so that the number o
particles moving along any lattice direction can range fro
0 to 2L21. The total number of states per site is then 2nL.
Computationally, this means that the state of each direc
is described by an integer ofL bits; hence the terminology
integer lattice gas automata~ILGA !.

To simplify the derivation of the hydrodynamic equatio
of an ILGA, we use the Boltzmann molecular chaos appro
mation, so that all quantities in our analysis are ensem
averaged, and we indiscriminately commute the applicat
of this average with the collision process. We also assu
that the particles are of unit mass. Denote the ensem
averaged value of thel th bit in the i th direction byNi ,l ,
where 0, i,n21 and 0,l ,L21. Also, denote the lattice
vector for thei th direction byci . The distribution function
for the total number of particles in each direction is then

Ni5 (
l 50

L21

2l Ni ,l . ~3.1!

The ensemble-averaged mass and momentum densitie
then given by

r5 (
i50

n21

Ni5 (
i50

n21

(
l 50

L21

2l Ni ,l ~3.2!

and

u5 (
i50

n21

ciN
i5 (

i50

n21

(
l 50

L21

2l ciN
i ,l . ~3.3!
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Let us also associate an energy« i with each particle in di-
rection i . The ensemble-averaged energy density is t
given by

«5 (
i50

n21

« iN
i5 (

i50

n21

(
l 50

L21

2l « iN
i ,l . ~3.4!

IV. THERMODYNAMICS
OF THE INTEGER LATTICE GAS

We first consider the thermodynamics of the integer
tice gas. The grand canonical partition function is

Z5(
$N%

exp@2b~E2a•P2mM !#,

where the sum is over all possible states of the ILGA@that is,
eachNi(x) is summed from 0 to 2L21#, whereb, a, and
m are Lagrange multipliers, and where

M[(
x

V

(
i

n

Ni~x!,

P[(
x

V

(
i

n

Ni~x!ci ,

and

E[(
x

V

(
i

n

Ni~x!« i

are the total mass, momentum, and energy, respectively
all the particles on a lattice ofV sites. Thus, we have

Z5(
$N%

expF2b(
x

V

(
i

n

~« i2a•ci2m!Ni~x!G
5(

$N%
)
x

V

)
i

n

exp@2b~« i2a•ci2m!Ni~x!#

5)
x

V

)
i

n

(
k50

2L21

exp@2b~« i2 a•ci2m!k#

5)
x

V

)
i

n

(
k50

2L21

~zi !k

5)
x

V

)
i

n S 12~zi !2
L

12zi D 5F)
i

n S 12~zi !2
L

12zi D GV,
where we have defined thefugacity

zi[exp@2b~« i2a•ci2m!#. ~4.1!

The grand potential is then

V52
1

b
lnZ52

V

b(
i

n

lnS 12~zi !2
L

12zi
D ,

so that
n

-

of

]

]b
~bV!52

]

]b
lnZ5V(

i

n S zi

12zi
2
2L~zi !2

L

12~zi !2
LD

3~« i2a•ci2m!.

We identify the equilibrium distribution function

FL~z![
z

12z
2
2L~z!2

L

12~z!2
L , ~4.2!

which gives the mean number of particles moving in ea
lattice direction. Since this has a maximum of 2L21, we
also define thefractional occupation number

f L~z![
FL~z!

2L21
.

Figure 1 showsf L(z) plotted againstz for several values of
L.

In terms of the equilibrium distribution function, we hav

V1b
]V

]b
5V2T

]V

]T
5V(

i

n

FL~z
i !~« i2a•ci2m!,

whereT[1/b is the temperature. It follows that

V5^H&2 a•^P&2m^M &2T^S&,

where we have identified the average energy

^H&[V(
i

n

FL~z
i !« i ,

the average momentum

^P&[V(
i

n

FL~z
i !ci ,

the average mass

^M &[V(
i

n

FL~z
i !,

FIG. 1. f L(z) vs z for several values ofL. The black curves
representL values from 1 to 6, with increasing steepness, while
gray curve is the limit asL→`.
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and the average entropy

^S&[2
]V

]T
5V(

i

n

SL~z
i !.

In the expression for the entropy we have defined the fu
tion

SL~z![ ln~12z2
L
!1S z2

L

12z2
LD ln~z2

L
!2 ln~12z!

2S z

12zD ln~z! ~4.3!

as the entropy per lattice direction. Thus, in addition to
form for the equilibrium distribution function, this analys
has provided us with an expression for the entropy tha
additive in the contributions from each lattice direction.
fact, it is straightforward to show thatSL→L ln2 in the limit
of largeL, corresponding to a dominant contribution of ln
per bit of state. The excess

DSL[SL2L ln2 ~4.4!

is thenO(1) in L and is plotted against the fractional occ
pation numberf L(z) in Fig. 2. This can be interpreted a
indicating that the bits are most random at half-filling; els
where, the entropy is lower thanL ln2 per bit.

V. KINETIC-THEORETICAL TREATMENT

As an alternative to the preceding thermodynamic tre
ment of the integer lattice gas, we can derive the princi
results from a kinetic-theoretical argument. For example
derive the form of the equilibrium distribution function, E
~4.2!, we can note that the equilibrium distribution functio
for each bitmust still be Fermi-Dirac in form, since eac
individual bit is either occupied or not. Thus,

N0
i ,l 5

1

11exp@2l b~« i2 a•ci2m!#
,

FIG. 2. Entropy excessDSL vs fractional occupation numbe
f L(z). The black curves representL values from 1 to 6, increasing
downward, while the gray curve is the limit asL→`.
c-

e

is

-

t-
l
o

where the multipliersb, a, andm are determined in terms o
the mass, momentum and energy densities by their de
tions, Eqs.~3.2!, ~3.3!, and~3.4!. In terms of thefugacity, Eq.
~4.1!, the above may be written,

N0
i ,l 5

1

11~zi !22l
. ~5.1!

The equilibrium distribution function for each direction
then given by Eqs.~3.1! and ~5.1!,

N0
i 5 (

l 50

L21

2l N0
i ,l 5FL~z

i !,

where we have defined the function

FL~z![ (
l 50

L21
2l

11z22l
5 (
l 50

L21 S 2l z2l
12z2

l 2
2l 11z2

l 11

12z2
l 11 D .

~5.2!

We see that this series telescopes to yield the form derive
the previous section,

FL~z!5
z

12z
2

2Lz2
L

12z2
L . ~5.3!

VI. FORM OF THE HYDRODYNAMIC EQUATIONS

To derive the hydrodynamic equations, we first expa
the equilibrium distribution function in the Mach numbe
Here and henceforth, we specialize to the case of no inte
energy, so that« i50, and we can absorb the multiplierb
into a andm. Treating a as a small quantity, the fugacit
can be written as

zi5emS 11 a•ci1
1

2
a a :cici D5z01z1

i 1z2
i ,

where the subscripts of

z0[em,

z1
i [z0 a•ci ,

z2
i [

z0
2

a a :cici

denote the order of the Mach number expansion, and we
that z0 is independent of the directioni . It follows that

N0
i 5FL~z

i !5FL~z01z1
i 1z2

i !.

Taylor expanding, we get

N0
i 5FL~z0!1z0FL8~z0! a•ci1

1
2z0@z0FL8~z0!#8 a a :cici .

To proceed, we must make some assumptions about
symmetries of the lattice. We demand that

(
i50

n21

^
kci5Ak1k ~6.1!
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for 0<k<4, where^ denotes the outer product, and whe
1k is the completely symmetric and isotropic tensor of ra
k,

1051,

~11! i50,

~12! i j5d i j ,

~13! i jk50

~14! i jkl5d i jdkl1d ikd j l1d i ld jk .

Note that Eq.~6.1! definesthe coefficientsAk for a given
lattice.

We now demand that

r5 (
i50

n21

N0
i 5A0FL~z0!1

A2b
2

2
z0@z0FL8~z0!#8,

and

u5 (
i50

n21

ciN0
i 5A2z0FL8~z0! a.

If we now let z denote the solution to the equation

r

A0
5FL~z!, ~6.2!

it follows that the difference betweenz andz0 is of second
order in the Mach number, so that we can solve form and
a. We find that

a5
u

A2zFL8~z!
,

and thatm5 lnz0 wherez0 is the solution to the equation

FL~z0!5
r

A0
2

z@zFL8~z!#8

2A0A2@zFL8~z!#2
u2.

Inserting these results into the distribution function, we fi

N0
i 5

r

A0
1
u•ci
A2

1
z@zFL8~z!#8

2A2
2@zFL8~z!#2

S cici2 A2

A0
12D :uu,

~6.3!

where, again,z is defined byFL(z)5r/A0.
The inviscid part of the stress tensor is then given by

(
i50

n

ciciN0
i 5

A2

A0
r1

z@zFL8~z!#8

2A2@zFL8~z!#2
S A4

A2
142

A2

A0
12^12D :uu

5FA2

A0
r1

z@zFL8~z!#8

2A2@zFL8~z!#2
S A4

A2
2
A2

A0
D u2G12

1
A4z@zFL8~z!#8

A2
2@zFL8~z!#2

uu

5P~r,u!121g~r!
uu

r
,

k
where we have identified the factor that multiplies the in
tial term in the Navier-Stokes equations,

g~r!5
A0A4zFL~z!@zFL8~z!#8

A2
2@zFL8~z!#2

, ~6.4!

and the equation of state,

P~r,u!5
A2

A0
r1S 12

A2
2

A0A4
Dg~r!

u2

2r
. ~6.5!

Equations~6.2!, ~6.4!, and~6.5! are the principal results o
this section. Equation~6.2! givesr in terms of the paramete
z. Equation~6.4! then givesg in terms ofz, so that Eqs.~6.2!
and~6.4! are a pair of parametric algebraic equations forg in
terms of the densityr. Finally, Eq.~6.5! gives the equation
of state forP in terms ofr andu. The coefficientsAj that
appear in these equations are given in terms of the lat
vectors by the conditions, Eq.~6.1!.

VII. EXAMPLE: BRAVAIS LATTICE

As a concrete example of this formalism, we consider
case of a regular Bravais lattice. Examples of such latti
with the requisite symmetry conditions, Eq.~6.1!, are the
triangular lattice in two dimensions@1# and the face-centere
hypercubic lattice in four dimensions@3#. In addition to the
n directions corresponding to unit-speed particles, we
cludenr null lattice vectors to accommodate rest particles.
this situation,

A05n1nr ,

A25
n

D
,

and

A45
n

D~D12!
,

whereD is the number of dimensions. Inserting these in
Eqs.~6.2! through~6.5!, we find

r5~n1nr !FL~z!,

g~r!5S D

D12D S 11
nr
n DGL~z!,

and

P~r,u!5
1

D S n

n1nr
D Fr2S 12

Dnr
2n Dg~r!

u2

r G .
Here we have defined the function

GL~z![
z fL~z!@z fL8~z!#8

@z fL8~z!#2
, ~7.1!

which we plot against thefractional occupation number,
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f L~z![
r

~2L21!~n1nr !
5
FL~z!

2L21
,

for several different values ofL in Fig. 3. ForL51 it is a
straightforward exercise to show that we recover the w
known result@3#

G1~z!5
122 f

12 f
,

which decreases monotonically from unity atf50, to zero at
half-filling ( f51/2), after which it becomes negative. F
L.1, we see that this decrease is no longer monotonic, s
the slope at the origin,g8(0), ispositive. Thus, forL.1, the
functiong has a maximum for some 0, f,1/2. The location
of this maximum approachesf50 asL→`. ~The limit of
infinite integers, i.e.,L→`, is discussed in the Appendix
and is shown as a shaded curve in Fig. 3.!

Galilean invariance is achieved wheng51, or

GL5S 11
2

D D S n

n1nr
D .

If the quantity (112/D)n/(n1nr) is greater than the maxi
mum value ofGL , then Galilean invariance is impossible fo
those values ofD, n, nr , andL; if it is less than this maxi-
mum, then there are two densities at which Galilean inv
ance is achieved. Some of these values are tabulated fo
Frisch, Hasslacher, and Pomeau~FHP! and face centered hy
percubic~FCHC! lattice gases in Table I.

VIII. VISCOSITY

To compute the viscosity of a ILGA in the Boltzman
molecular chaos approximation@3#, we consider its
ensemble-averaged collision operatorV i ,l . This quantity is
the ensemble average of the increase in bitl in direction i
due to collisions. It is given by

V i ,l 5(
s,s8

A~s→s8!~s8 i ,l 2si ,l !P~s!,

FIG. 3. GL vs f for several values ofL. The black curves rep-
resentL values from 1 to 6, increasing upward, while the gr
curve is the limit asL→`.
l-

ce

i-
the

whereP(s) is the probability that the incoming state iss,
A(s→s8) is the probability that the collision process tak
incoming states to outgoing states8, andsi ,l is the value of
bit l in direction i in incoming states ~and likewise for
outgoing states8). In the Boltzmann approximation, th
probability of a states is the product of the correspondin
fractional occupation numbers, or their complements,

P~s!5 )
k850

n21

)
850

L21

~Nk8,8!s
k8,8

~12Nk8,8!12sk8,8.

To get the total increase of particles in directioni , we take
the sum

V i[ (
l 50

L21

2l V i ,l 5(
s,s8

A~s→s8!~s8 i2si !

3 )
k850

n21

)
850

L21

~Nk8,8!s
k8,8

~12Nk8,8!12sk8,8,

where

si[ (
l 50

L21

2l si ,l

TABLE I. Values of fP(0,1/2) such thatg51.

nr L Low-density root High-density Root

FHP lattice gas (D52, n56)
0 ` 0.0 0.0
1 6 0.0396831 0.143848

` 0.0 0.168451
2 4 0.0704358 0.126560

5 0.0322583 0.177356
6 0.0158730 0.195949
` 0.0 0.212636

4 3 0.0362392 0.167555
4 0.0166667 0.228582
5 0.0080645 0.253770
6 0.0039683 0.265426
` 0.0 0.276535

FCHC lattice gas (D54, n524)
0 4 0.0704358 0.126560

5 0.0322583 0.177356
6 0.0158730 0.195949
` 0.0 0.212636

1 4 0.0528917 0.152419
5 0.0253456 0.193030
6 0.0124717 0.209795
` 0.0 0.225163

2 4 0.0417410 0.171769
5 0.0201613 0.207212
6 0.0099206 0.222576
` 0.0 0.236849

4 3 0.0654937 0.120009
4 0.0266677 0.203001
5 0.0129032 0.232239
6 0.0063492 0.245488
` 0.0 0.257994
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is the total number of particles in directioni in states ~and
likewise for s8).

To compute the viscosity, we must form the Jacobian m
trix of the collision operator. Direct calculation yields

]V i ,l

]Nk, 5(
s,s8

A~s→s8!~s8 i2si !P~s!
~sk,2Nk,!

Nk,~12Nk,!
.

We would like to evaluate this Jacobian at the equilibriu
given by Eq.~5.1!,

N0
k,5

1

11~zk!22 .

Taking the derivative of this equation with respect to t
fugacity,

]N0
k,

]zk
5

2~zk!2221

@11~zk!22
#2

5
2N0

k,~12N0
k,!

zk
,

we can use the chain rule to get the integer version of
Jacobian of the collision operator at equilibrium,

Jk
i [

]V i

]Nk U
0

5 (
l ,50

L21

2l
]V i ,l

]Nk, U
0

]Nk,/]zk

]Nk/]zk U
0

5(
s,s8

A~s→s8!~s8 i2si !P0~s!
~sk2Nk!

zkFL8~zk!
. ~8.1!

In fact, we need this result only in the limit of zero Mac
number, so we can use the lowest order expression for
fugacity, zk5z ~see Sec. VI!, which is independent of the
index k. We find that the zero Mach number limit of th
Boltzmann probability of states is given by

P0~s!5 )
k850

n21

)
850

L21

~N0
k8,8!s

k8,8
(12N0

k8,8)12sk8,8

5 )
850

L21 S 1

11z228D p8~s!S z228

11z228D n2p8~s!

,

where

p~s![ (
k50

n21

sk,

is the total number of populated bits in theth binary digit. It
follows that

P~s!5F )
50

L21

~11z2

!21GnS )

50

L21

z2
p~s!D

5S 12z

12z2
LD nzp~s!,

where

p~s![ (
50

L21

2p~s!
-

e

he

is the total number of particles present in states.
Inserting this result into the expression, Eq.~8.1!, for the

collision operator, we obtain

Jk
i 5

1

zFL8~z! S 12z

12z2
LD n(

s,s8
A~s→s8!~s8 i2si !

3@sk2FL~z!#zp~s!.

As a consequence of conservation of probability, Eq.~1.1!,
and semidetailed balance, Eq.~1.2!, it follows that the sec-
ond term in square brackets vanishes, so we finally get

Jk
i 5

1

zFL8~z! S 12z

12z2
LD n(

s,s8
A~s→s8!~s8 i2si !skzp~s!.

At first order in Knudsen number, the kinetic equation
@4#

ci•¹N0
i 5Jj

iN1
j ,

where there is an understood summation overj . The only
part of the left-hand side that contributes to the viscos
comes from the second term on the right-hand side of
~6.3!, whence

Jj
iN1

j 5
1

A2
cici :“u.

Now, J is a singular matrix; it has a null eigenvector corr
sponding to each hydrodynamic mode of the system. Th
null eigenvectors span what we shall call thehydrodynamic
subspaceof the system. The complement of this subspace
called thekinetic subspace, and is spanned by the kineti
modes with nonzero~negative! eigenvalue. If we restrict our
attention to the kinetic subspace, then we can form
pseudoinverse ofJ, denoted byJ21, in terms of which we
may write

N1
i 5

1

A2
~J21! j

icjcj : “u.

The conservation law for momentum then contains the te

(
i

~cici•“N1
i 1 1

2 cicici :““N0
i 1••• !

5“•H 1A2
F(
i , j

cici~J
21! j

icjcj1
1
2(

i
cicicici G :~“u!J

1•••.

We note thatJ21 is diagonalized and degenerate in the su
space spanned by then outer products of the lattice vector
with themselves; that is

(
j

~J21! j
icjcj52lcici , ~8.2!

wherel is a scalar, whence the above term in the moment
conservation equation becomes
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FIG. 4. Time decay of shear-wave amplitude.
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“•FA4

A2
~2l1 1

2 !14 :~“u!G1•••5“•FA4

A2
~2l1 1

2 !“uG ,
from which we identify the kinematic viscosity,

n5
A4

A2
~l2 1

2 !.

The quantityl is then determined by taking the double sp
tial dot product ofcici on both sides of Eq.~8.2!, and sum-
ming overi to get

n52l(
i , j

Jj
i ~ci•cj !

2,

whence

1

l
5

21

nzFL8~z! S 12z

12z2
LD n(

i , j
(
s,s8

A~s→s8!~s8 i2si !zp~s!sj

3~ci•cj !
2,

where f5 f L(z) determines the parameterz in terms of the
fractional occupation number. This result is easily seen
reduce to that of He´non @12# whenL51.

We computed the viscosity of anL52 lattice gas in two
dimensions (D52) by measuring the decay of a shear wa
in periodic geometry. We used a lattice of size 5123512 on
a CAM-8 Cellular-Automata machine@13#. The probabilistic
collision procedure used obeyed semidetailed balance,
each outgoing state allowed by the conservation la
sampled with equal probability. Figure 4 shows the decay
the shear wave amplitude to be exponential in nature, a
appropriate for Navier-Stokes evolution. The time const
of the exponential then determines the viscosity, which
-

o

ith
s
f
is
t
s

plotted as a function of density in Fig. 5, along with the
curve predicted by the theory given above.

While the agreement with theory is good at intermediat
values of the fractional occupation number near half-filling
we note that it is seriously in error at low~and high! frac-
tional occupation numbers. At present, we attribute this di
crepency to deviations from the Boltzmann molecular chao
approximation, and we plan to investigate them using kinet
ring theory@4# in a forthcoming publication.

IX. STATISTICAL NOISE

Finally, we consider the statistical noise of the ILGA
model. With the maximum number of particles per directio
increasing as 2L, one might naively expect the noise level to
decrease withL as 1/A2L;22L/2. Unfortunately, as we shall
show, this expectation is not realized, due to the extreme

FIG. 5. Viscosity vsf for L52.
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narrow dynamic range of the fugacity for largeL. This is
best seen in Fig. 1, in which the effective width of the fun
tion f L(z) nearz5 1

2 decreases like 2
2L, making for a subtle

limiting process that is discussed in the Appendix.
Let ni ,l (x,t) be the precise value of bitl in directioni at

lattice sitex at timet. The ensemble average of this quant
is Ni ,l , as used in the text of the paper. The mean numbe
particles in a~space-time! block of N sites is then

F15 (
~x,t !

N

(
i

n

(
l 50

L21

2l ^ni ,l ~x,t !&5nNFL~z!,

where the angle brackets denote the ensemble average.
The mean square of the number of particles in this blo

of sites is then

F25 (
~x,t !

N

(
~x8,t8!

N

(
i

n

(
i 8

n

(
l 50

L21

(
l 850

L21

2l 1l 8

3^ni ,l ~x,t !ni 8,l 8~x8,t8!&.

The bits are either zero or one, and in the Boltzmann m
lecular chaos approximation different bits are uncorrelated
follows that

^ni ,l ~x,t !ni 8,l 8~x8,t8!&5^ni ,l ~x,t !&^ni 8,l 8~x8,t8!&

1dx,x8d t,t8d i ,i 8d l ,l 8^n
i ,l ~x,t !&

3@12^ni ,l ~x,t !&#,

whence

F25F121nN(
l

L21
22l z2

l

~11z2
l
!2

5F121nNzFL8~z!.

It follows that the standard deviation of the number of p
ticles in the block isAF22F12. To define a fractional noise
we could divide this by the mean number of particles,F1,
but it preserves particle-hole symmetry if we instead divid
by the square root of the product of the mean number
particles and the mean number of holes, thus

DF[A F22F12

F1@nN~2L21!2F1#

5
1

AnN~2L21!
A z fL8~z!

f L~z!@12 f L~z!#
. ~9.1!

This appears to decrease exponentially withL, but it must be
noted that the logarithmic derivative off L(z) goes as 2

L at
z5 1

2. Since, for fixed fractional occupation numberf L , z
tends to12 asL tends to infinity, we see thatDF is order unity
in L. Thus, the fractional noise does decrease withL, but not
as rapidly as one might hope. It is plotted as a fraction
1/AnN for several different values ofL in Fig. 6.

X. SAMPLING PROCEDURE

Finally, we consider some practical considerations c
cerning the computer implementation of the ILGA mod
-

of

k

-
It

-

it
f

f

-
.

Since each site hasnL bits, and therefore 2nL possible states
and since the most popular lattices with the requisite isotr
properties haven56 andn524, it is clear that the brute
force approach in which a lookup table is used to store
collision outcome states will not be feasible forL much
greater than unity.

For this reason, we propose another sampling scheme
the outgoing states. Though the method we propose is c
pletely general, we illustrate it for the two-dimensional int
ger lattice gas on a triangular grid (n56). Let n be an
integer-valued columnn-vector whose components are th
particle occupation numbers in each of the six directions

Let us suppose that the mass and the two componen
momentum are the only conserved quantities. Since th
conserved quantitites are linear in the particle occupa
numbers, each of them corresponds to a row vector, wh
inner product withn yields the conserved quantity in que
tion. Thus, corresponding to the mass we have the row v
tor

q15~1 1 1 1 1 1!,

corresponding to thex momentum~multiplied by a factor of
2), we have

q25~2 1 21 22 21 1!,

and corresponding to they momentum~multiplied by a fac-
tor of 2/A3), we have

q35~0 1 1 0 21 21!.

In fact, these row vectors are precisely thehydrodynamic
eigenvectors, mentioned in our derivation of the viscosity
that is,

Jk
i ~q1!

k5Jk
i ~q2!

k5Jk
i ~q3!

k50.

It is clear that these can always be chosen to be mutu
orthogonal, without loss of generality. Using the Gram
Schmidt procedure, it is then possible to find three vect
spanning thekinetic subspace, orthogonal to the above; e.g

FIG. 6. DFL vs f for several values ofL. The black curves
representL values from 1 to 4, increasing downward, while th
gray curve is the limit asL→`.
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q45~2 21 21 2 21 21!,

q55~1 21 1 21 1 21!,

and

q65~0 1 21 0 1 21!.

Now the collision process takes staten to staten8. Since
it cannot change the values of the conserved quantitie
follows that the difference betweenn8 andn must be a linear
combination of kinetic eigenvectors. That is,

n85n1a4q4
T1a5q5

T1a6q6
T ,

where thea ’s are integer constants, and where the sup
scriptT denotes ‘‘transpose.’’ Thus, writing out componen
we have

n85S n112a41a5

n22a42a51a6

n32a41a52a6

n412a42a5

n52a41a51a6

n62a42a52a6

D .

Since the components ofn8 must all be between 0 an
2L21, inclusive, we derive the following six inequality con
straints:

0<n112a41a5<2L21,

0<n22a42a51a6<2L21,

0<n32a41a52a6<2L21,

0<n412a42a5<2L21,

0<n52a41a51a6<2L21,

0<n62a42a52a6<2L21.

These inequality constraints define a polytope in the thr
dimensional space of allowed values ofa4, a5, anda6. We
know that this polytope must exist and contain the origin
that space, sincea45a55a650, corresponding to the
‘‘trivial collision’’ in which the occupation numbers do no
change their values, will always satisfy the constraints.

The collision process is then specified by a strategy
sampling points from this polytope. It is possible, thou
tedious, to derive a closed-form algorithm to do this, ba
on the above constraints. Details of this procedure will
provided in a forthcoming publication@14#.

XI. CONCLUSIONS

We have generalized the hydrodynamic lattice gas mo
to include integer numbers of particles moving in each dir
tion at each site. We have presented the thermodynamics
kinetic theory of this generalized integer lattice gas mod
including closed-form~or parametric algebraic! equations for
it

r-
,

e-

r

d
e

el
-
nd
l,

the equilibrium distribution function, the entropy, the equ
tion of state, the non-Galilean factor in the inertial term
the fluid equations, and the statistical noise. We have ther
shown that the ILGA model allows for the attainment
Galilean invariance, and a reduction in the kinematic visc
ity and the statistical noise. In future publications, we sh
show that this generalization also allows for more straig
forward inclusion of interparticle interactions than the usu
binary model.
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APPENDIX: THE INFINITE INTEGER LIMIT

To consider the limit of infinite integers,L→`, we first
note that the fractional occupation number,

f L~z!5
FL~z!

2L21
5

1

2L21 S z

12z
2
2Lz2

L

12z2
LD , ~A1!

has the limiting behavior

lim
z→0

f L~z!50,

lim
z→1

f L~z!5 1
2 ,

lim
z→`

f L~z!51

for all L; here we have used L’Hoˆpital’s rule to establish the
result forz→1. Referring to Fig. 1, we note that the functio
f L(z) becomes increasingly like a step atz51 asL→`. To
verify this, we note that the width of the gradient there c
be estimated by

lim
z→1

f L~z!

f L8~z!
5

6

2L11
,

which clearly goes to zero asL→`; once again we have
used L’Hôpital’s rule to establish this result.

The approach to a step function means that the en
range of fractional occupation numbers is parametrized
values ofz within order 22L from 1, asL→`. That being
the case, we write
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z511
y

2L
, ~A2!

where y is a new parameter of order unity. Note that t
fractional occupation number is exactly 1/2 wheny50. In-
serting Eq.~A2! into Eq. ~A1!, we can now take the limit as
L→` to get

limL→` f LS 11
y

2LD5
1

12e2y 2
1

y
. ~A3!

Next, inserting Eq.~A2! into Eqs.~4.3! and~4.4!, and taking
the limit asL→`, we find the entropy excess,

limL→`DSLS 11
y

2LD5 ln~12e2y!2
ye2y

12e2y 2 lny11.

~A4!
.

s

Equations ~A3! and ~A4! constitute parametric algebrai
equations, with parametery, yielding DSL as a function of
the fractional occupation numberf L asL→`. These equa-
tions were used to produce the shaded curve in Fig. 2.

Likewise, inserting Eq.~A2! into Eqs. ~9.1!, and taking
the limit asL→`, we find the fractional noise,

limL→`DFLS 11
y

2LD5A y222coshy12

y222ysinhy12coshy22
~A5!

Equations ~A3! and ~A5! constitute parametric algebrai
equations, with parametery, yielding DFL as a function of
the fractional occupation numberf L asL→`. These equa-
tions were used to produce the shaded curve in Fig. 6.

Finally, inserting Eq.~A2! into Eqs.~7.1!, and taking the
limit as L→`, we find theGL factor for a Bravais lattice,
limL→`GLS 11
y

2LD5
21~y312y28!ey1~y426y112!e2y1~y42y316y28!e3y22~y21!e4y

@12~y212!ey1e2y#2
. ~A6!

Equations~A3! and ~A6! constitute parametric algebraic equations, with parametery, yielding GL as a function of the
fractional occupation numberf L asL→`. These equations were used to produce the shaded curve in Fig. 3.
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