PHYSICAL REVIEW E VOLUME 55, NUMBER 4 APRIL 1997

Integer lattice gases

Bruce M. Boghosiah
Center for Computational Science, Boston University, 3 Cummington Street, Boston, Massachusetts 02215

Jeffrey Yepek
PL/GPAA, Hanscom Air Force Base, Massachusetts 01731

Francis J. Alexandér
Center for Computational Science, Boston University, 3 Cummington Street, Boston, Massachusetts 02215

Norman H. Margolu%
Laboratory for Computer Science, Massachusetts Institute of Technology, Technology Square, Cambridge, Massachusetts 02139
(Received 15 February 1996

We generalize the hydrodynamic lattice gas model to include arbitrary numbers of particles moving in each
lattice direction. For this generalization we derive the equilibrium distribution function and the hydrodynamic
equations, including the equation of state and the prefactor of the inertial term that arises from the breaking of
Galilean invariance in these models. We show that this prefactor can be set to unity in the generalized model,
thereby effectively restoring Galilean invariance. Moreover, we derive an expression for the kinematic viscos-
ity, and show that it tends to decrease with the maximum number of particles allowed in each direction, so that
higher Reynolds numbers may be achieved. Finally, we derive expressions for the statistical noise and the
Boltzmann entropy of these mode|$1063-651X96)08612-§

PACS numbds): 05.20.Dd, 05.50+q

| LATTICE GASES nolds number, Re M/Kn; and the fractional variation of
density from its average valuép/p. Hydrodynamic behav-

Lattice gas automatd GA) are a class of dynamical sys- ior [5] is attained in the limit as Kn and Sh go to zero.
tems in which particles move on a lattice in discrete timeViscoushydrodynamicg5] is attained when ShKn? in this
steps. If the collisions between the particles conserve madsnit. Incompressibleviscous hydrodynamick6] is then at-
and momentum, and the lattice is sufficiently symmetric, theained when we also havil ~Kn so that Re-O(1), and
coarse-grained behavior of the system can be shown to b&p/p~Kn?.
that of a viscous fluid in the appropriate scaling lifrfit-4]. The Chapman-Enskog procedure is a perturbation expan-
Used as an algorithm for simulating hydrodynamics, thesion in the above-described asymptotic ordering. For a LGA
method has the virtues afxactconservation laws, and of whose collisions conserve mass and momentum on a lattice
unconditionalnumerical stability. of sufficient symmetry(quantified below; the local equilib-

In a typical LGA, there is an association between therium distribution function can be shown to be Fermi-Dirac in
lattice vectors and the particles at each site. If therenare nature[2—4]. The Chapman-Enskog procedure can then be
lattice vectors, then the state of the site is represented by used to compute the correction to this Fermi-Dirac distribu-
bits. Each bit represents the presence or absence of a particlen and thereby shoWl—4] that the pressur® and the
in the corresponding direction. At each time step, a particlanomentum densityy obey the following equations in the
propagates along its corresponding lattice vector and theasymptotic limit:
collides with other arriving particles at the new sitdlote
that rest particles can be subsumed into this scheme by as- V.u=0,
sociating them with null lattice vectojsThe collisions are (0)
required to conserve particle mass and momentum. Ju g(p _ 2

Relevant dimensionless quantities of a LGA are the HJFTU'VU__VPJ”’(’))V u,

Knudsen number Kn defined as the ratio of the mean free

path to the characteristic length scale; the Strouhal numbewrhere p is the fluid density(a constant in this limjt The

Sh defined as the ratio of the mean free time to the chara@analysis also yields expressions for the functigfip) and

teristic time scale; the Mach numbbt defined as the ratio v(p), and an equation of state f&. In particular, the form

of the characteristic velocity to the speed of sound; the Reyef these equations, the equation of state, and the expression
for the functiong(p) depend only on the fact that mass and
momentum are conserved—and are the only things

“Electronic address bruceb@bu.edu conserved—nby the collisions. The expression for the viscos-
Electronic address: yepez@wave.plh.af.mil ity v(p) depends on the details of the collision rules used.
*Electronic address: fla@bu.edu Since the fluid density is a constant in the asymptotic
$Electronic address: nhm@im.lcs.mit.edu limit, the factorsg(p) and v(p) are also constants. As has
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been noted, the latter is the fluid viscosity. The presence afiating the statistical fluctuations that are inherent in the LGA
the former is reflective of a breaking of Galilean invariance,method. This means that in complex fluid applications for
due to the fact that the lattice itself constitutes a preferredvhich statistical fluctuations are an essential part of the phys-
Galilean frame of reference. For a single-phase LGA, thecs, they have to be reintroduced artificiali0].

former factor can easily be scaled away by redefining the For a lattice Boltzmann equation corresponding to a lat-

momentum density and pressure as tice gas with only one bit per lattice vector, this real-valued
distribution function is bounded between zero and one. This
U=g(p)u need not be the case, however, and the LBE procedure al-

lows one to tailor the equilibrium distribution function to
satisfy certain desiderata. Among these is the ability to de-
P=g(p)P mand Galilean iqvarianc@g(p)zl] [11]. _

' At the same time, the LBE method gives up two of the
whereu and P are those measured in the simulation. ForPrincipal advantages of LGA's: Due to the roundoff error
compressible flow, or for multiphase flow with interfaces, NN€rent in manipulations of real numbers on a computer, it
however, the presence of tlgép) factor is problematic, and " Ionger’mamtams the conservation laws exactly_. More-
various techniques have been proposed to remove it. It hdd/€"» LBE'S are no longer unconditionally stable; indeed,
been shown that this can be done by judiciously violatingthey are subject to a variety of numerical instabilities, most
semidetailed balance in the collision rJig], or by adding °f which are not well understood.
many rest particles at each sfi&).

The unconditional stability of the lattice gas procedure lll. INTEGER LATTICE GAS AUTOMATA

a_lrises from_ a _requirem(_ant that the coIIis?ons _satisfy a statis- In this paper, we investigate a simple generalization of the
tlgngre\_/rirs,lb Illltly 'condltlon kn.ov:c/nllasemligtgllsdtEal?nce. lattice gas concept that can be used to control the level of
(. ) .eAco 'S'o,n pro;:_ef]s_ IS hu y Spscé.'r.’ %’ eh ransl- statistical fluctuations—reducing it if desired, but not neces-
tion matrix A(s—s"), which is the probability that the in- oo\ eliminating it altogether—while maintaining the con-

coming states will result in the outgoing stats’. Since <o ation Jaws exactly, preserving unconditional stability,
coII|5|or_1; must r_esult in some outgoing state, conservation of 4 allowing for Galilean invariance.
probability requires that The use of a single bit per each ofdirections to repre-
sent the state of a given lattice site means that the number of
2 A(s—s')=1. (1.1 particles moving along any lattice direction is either zero or
s’ one. We generalize this by allowing for up to bits per
direction, for a total ohL bits per site, so that the number of
particles moving along any lattice direction can range from
0 to 2-—1. The total number of states per site is théth.2
> A(s—s')=1. (1.2 Computationally, this means that the state of each direction
s is described by an integer a&f bits; hence the terminology
integer lattice gas automatdLGA).
To simplify the derivation of the hydrodynamic equations
of an ILGA, we use the Boltzmann molecular chaos approxi-
mation, so that all quantities in our analysis are ensemble

SDB, it is possible to prove aH theorem, from which fol-  5\eraged, and we indiscriminately commute the application
lows the unconditional stability of the lattice gas algorithm. 5 ¢1iq average with the collision process. We also assume

An important limitation of the lattice gas procedure has t0,4t the particles are of unit mass. Denote the ensemble-

do with the statistical noise associated with the Coarseéveraged value of the'th bit in theith direction byNi,/,

grained averaging that is necessary to get the hydrodynamigpere ocj<n—1 and 0</<L—1. Also, denote the lattice
quantities that obey the above fluid equations. fits per vector for theith direction byc;. The distribution function

site, and for coarse-grained averages over blocks eites, ¢4 the total number of particles in each direction is then
the noise is of order-1/\/nN. For some applications—most

notably the simulation of complex fluids—a certain control- oL )

lable amount of noise is actually desirable because it is es- N'= E 2/N'". (3.9
sential to the physics; for simple fluid dynamics computa- /=0
tions, on the other hand, the noise is a nuisance.

and

SDB is then the condition that

[Note that the condition ofdetailed balance (DB),
A(s—s')=A(s'—s), implies that of SDB, but not vice
versa; that is, SDB is a weaker condition than PBrom

The ensemble-averaged mass and momentum densities are

then given by
II. LATTICE BOLTZMANN EQUATIONS

n—1 n-1L-1
Because of their noise and lack of Galilean invariance, p= 2 Ni= 27N+ (3.2
LGA'’s have been replaced by lattice Boltzmann equations i=0 =0 /=0
(LBE) for many hydrodynamics applications of interest in
recent year$9]. These methods keep track only of an aver—and
aged occupation number of particles in each direction at each n—1 n-1L-1
site. Moreover, the collision operator most often used is a u=> gN'= 27NV (3.3

simple relaxation to a noiseless equilibrium, thereby elimi- i=0 i=0 /=0
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Let us also associate an energywith each particle in di-
rection i. The ensemble-averaged energy density is then
given by

n-1 n-1L-1

8=2 gN'= 2 2 2 e NV (3.4)

IV. THERMODYNAMICS
OF THE INTEGER LATTICE GAS

Fractional Occupation Number

We first consider the thermodynamics of the integer lat-
tice gas. The grand canonical partition function is

Fugacity

2= ex{ — B(E—a-P—pM)],
{N} FIG. 1. f (2) vs z for several values of.. The black curves

represent. values from 1 to 6, with increasing steepness, while the

where the sum is over all possible states of the IL{@#at is, gray curve is the limit ag —oc.

eachN'(x) is summed from 0 to '2-1], whereg, «, and
u are Lagrange multipliers, and where

Zi oL(7)2"
vV on (39)  nz= VE —(—_)L
i B B -z 1-(7)?
M=2 > N(x),
o X(ei—a CG—p).
Pz% é NI(X)G . We identify the equilibrium distribution function
t oz 2Y2)?
and Fu(z)= -z 1-® 4.2
\% n
_ i _ which gives the mean number of particles moving in each
E_; Z N'(e; lattice direction. Since this has a maximum df-21, we

also define thdractional occupation number
are the total mass, momentum, and energy, respectively, of

all the particles on a lattice of sites. Thus, we have @)= L(Z)
|_ = .
\% n 1
Z:{EN:} ex;{ —Bg Z (ei—a-G—u)N'(x) Figure 1 showd | (z) plotted against for several values of
L.
v.on _ In terms of the equilibrium distribution function, we have
=> [T II exd - B(si—a-c—wN'(0)]
N x i Q) Q)
o Q+py5=0- T—_VE FU(Z)(ei—a G—p),

k= whereT=1/8 is the temperature. It follows that

V. n 2t-1
‘ Q=(H)— a-(P)—u(M)-T(S),
=111l > @)*
x i k=0 where we have identified the average energy
Vo 1-(2)?2 n 1_(Zi)2'- v n
=11 H( 1-7 ): 11 (ﬁ—) ' (H)=VX Fi()e,

where we have defined tiagacity

Z=exfd —B(ei—a-c—u)l. 4.1

the average momentum

Py=V2, F.(Z)¢,
The grand potential is then (P)= 2 '
1 vy [1-(4H? the average mass
Q=—/—3|nz=——2 In| ——5—.

<M>EVEi Fu(Z),

so that
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where the multiplier®, «, andu are determined in terms of
the mass, momentum and energy densities by their defini-
tions, Eqs(3.2), (3.3), and(3.4). In terms of thefugacity, Eq.
(4.1), the above may be written,

-
4

=2 - 1

§ Ny’ = . . 5.1
@) 7 o
<

Lu-

The equilibrium distribution function for each direction is
then given by Eqs(3.1) and(5.1),

L-1
0.2 0.4 0.6 0.8 1 ; ) .
No= 2 2'Ny'=Fu(2),

Fractional Occupation Number

FIG. 2. Entropy excesaS, vs fractional occupation number Where we have defined the function
fL(2). The black curves representvalues from 1 to 6, increasing L—1

, L—1 , / Vi /+1
downward, while the gray curve is the limit &s—x. _ 2/ _ 27 2/ 172
Fl =2 ——= 57~ 7T
/=01+z /=0\1-2z 1-z
and the average entropy (5.2
50 n We see that this series telescopes to yield the form derived in
=__"_vy 2. the previous section,
(§=- 7=V s(2)
z 2Lzt

:_n the expression for the entropy we have defined the func- Fu@)=1,— 1A 53
ion

22" VI. FORM OF THE HYDRODYNAMIC EQUATIONS

S (2)=In(1—-22)+

2L
_22L> In(z")=In(1-2) To derive the hydrodynamic equations, we first expand
the equilibrium distribution function in the Mach number.
z Here and henceforth, we specialize to the case of no internal
122 In(2) (4.3 energy, so that;=0, and we can absorb the multipligr

into « and i. Treating e as a small quantity, the fugacity

as the entropy per lattice direction. Thus, in addition to the"an be written as

form for the equilibrium distribution function, this analysis . 1 o
has provided us with an expression for the entropy that is Z'=eMl 1+ a-ci+§aa GG | =29+ 2+ 25,
additive in the contributions from each lattice direction. In

fact, it is straightforward to show th& — LIn2 in the limit

. . L where the subscripts of
of largeL, corresponding to a dominant contribution of In2

per bit of state. The excess zo=e",
ASLESL—LMZ (44) Zi:I_EZO a-G,
is thenO(1) in L and is plotted against the fractional occu- oz
pation numberf, (z) in Fig. 2. This can be interpreted as Z'ZEEaa GG
indicating that the bits are most random at half-filling; else-
where, the entropy is lower tharin2 per bit. denote the order of the Mach number expansion, and we note

that z, is independent of the directidn It follows that
V. KINETIC-THEORETICAL TREATMENT ) ) . .
No=F (Z)=F (zo+2Z,+2,).
As an alternative to the preceding thermodynamic treat-
ment of the integer lattice gas, we can derive the principallaylor expanding, we get
results from a kinetic-theoretical argument. For example, to
derive the form of the equilibrium distribution function, Eq. Ng=F(Zo) + ZoF| (20) @- G+ 325[20F | (2p)]’ @ @ :CiG; .
(4.2), we can note that the equilibrium distribution function
for each bitmust still be Fermi-Dirac in form, since each  ToO proceed, we must make some assumptions about the

individual bit is either occupied or not. Thus, symmetries of the lattice. We demand that
1 n-1
- ®kg=Al 6.1
NG = exd 2 Ble— @ - )]’ Eo kK €1
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for 0<k=4, where® denotes the outer product, and wherewhere we have identified the factor that multiplies the iner-
1, is the completely symmetric and isotropic tensor of ranktial term in the Navier-Stokes equations,

K,
1o=1,
(11)i=0,
(L)ij= 3,
(13)i=0

()i =

Note that Eq.(6.1) definesthe coefficientsA, for a given
lattice.
We now demand that
n—-1 2

) A,
P:izo No=AoF(Z0) + 2,8 20[20F((20)]',

6ij Ok SikOj1 + 81 Sk -

and
n—-1

u= 2 CiNio:AzzoFﬁ(Zo) a.
i=0

If we now letz denote the solution to the equation

AﬁO=FL(z), 6.2

it follows that the difference betweenand z, is of second
order in the Mach number, so that we can solve goand
«. We find that

B u
- AzF(2)’

and thatu=Inzy wherez, is the solution to the equation

p AzF(D]

U2 = A " oAz () 2

Inserting these results into the distribution function, we find

LuG

zF (2)] Az
R o RO S

Ag
(6.3

where, againz is defined byF | (z) = p/A,.
The inviscid part of the stress tensor is then given by

n
2 GG
i=0

Az zF ()] (As, A,
N ey L — 1, —1LRL:
T A T 2AZF (D) P AT Ay 2O Y

[Ae,, AL (A Ay
A 2AZF (2

1

A Ag"

AdzR@)
AZzF (2)]2

uu
:P(P'U)12+9(P)7,

AoAszFL(2)[ZF ()]
= ‘ , 6.4
A ET e ©4
and the equation of state,
A, A2 u?
P(p,U)=A—Op+ 1- g(p)—- (6.5

Equationg6.2), (6.4), and(6.5) are the principal results of
this section. Equatiof6.2) givesp in terms of the parameter
z. Equation(6.4) then givegy in terms ofz, so that Eqs(6.2)
and(6.4) are a pair of parametric algebraic equationsgan
terms of the density. Finally, Eq.(6.5) gives the equation
of state forP in terms ofp andu. The coefficientsA; that
appear in these equations are given in terms of the lattice
vectors by the conditions, E¢6.1).

VIl. EXAMPLE: BRAVAIS LATTICE

As a concrete example of this formalism, we consider the
case of a regular Bravais lattice. Examples of such lattices
with the requisite symmetry conditions, E¢f.1), are the
triangular lattice in two dimensiorjd] and the face-centered
hypercubic lattice in four dimension8]. In addition to the
n directions corresponding to unit-speed particles, we in-
cluden, null lattice vectors to accommodate rest particles. In
this situation,

Ag=n+n,,

D !

n

As=BD72)’

whereD is the number of dimensions. Inserting these into
Egs.(6.2) through(6.5), we find

=(n+n)F (2),

9(p)= GL(2),

b 140
D+2 n

fi-

Here we have defined the function

and

2

Dn, u
n Q(P)?

1
Plp,u)=5

n+n,

zf (9[zf ()]

BACI .3

GL(9)=

which we plot against thé&actional occupation number
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TABLE I. Values of f €(0,1/2) such thag=1.

n, L Low-density root High-density Root
FHP lattice gasD=2, n=6)
0 0 0.0 0.0
1 6 0.0396831 0.143848
0 0.0 0.168451
2 4 0.0704358 0.126560
5 0.0322583 0.177356
0 6 0.0158730 0.195949
0.1 0.2 0.3 0.4 0.5 o 0.0 0.212636
Fractional Occupation Number 4 3 0.0362392 0.167555
4 0.0166667 0.228582
FIG. 3. G, vsf for several values of. The black curves rep- 5 0.0080645 0.253770
resentL values from 1 to 6, increasing upward, while the gray 6 0.0039683 0.265426
curve is the limit ad —oo. % 0.0 0.276535
FCHC lattice gas@ =4, n=24)
p FL(2) 0 4 0.0704358 0.126560
fL(2)= 2r—D)(n¥n) 2L-1’ 5 0.0322583 0.177356
' 6 0.0158730 0.195949
for several different values df in Fig. 3. ForL=1 it is a j ?).%528917 0(')2115222’?9
straightforward exercise to show that we recover the well- : :
known resulf3] 5 0.0253456 0.193030
6 0.0124717 0.209795
1—2f © 0.0 0.225163
Gi(2)= 1_f 2 4 0.0417410 0.171769
5 0.0201613 0.207212
. . . 6 0.0099206 0.222576
which decreases monotonically from unityfat 0, to zero at
half-filli f=1/2), af hich it b i F - 0.0 0236849
alf-filling (f=1/2), after which it becomes negative. For , 3 0.0654937 0.120009
L>1, we see that this decrease is no longer monotonic, since
S, . . 4 0.0266677 0.203001
the slope at the origirg’ (0), ispositive. Thus, fo.>1, the
. . . 5 0.0129032 0.232239
functiong has a maximum for some<0f <1/2. The location
of this maximum approaches=0 asL—x. (The limit of 6 0.0063492 0.245488
' o 0.0 0.257994

infinite integers, i.e.L—x, is discussed in the Appendix,
and is shown as a shaded curve in Fig. 3.

Galilean invariance is achieved whgs1, or where P(s) is the probability that the incoming state $s
A(s—s') is the probability that the collision process takes
incoming states to outgoing state’, ands'” is the value of

. bit / in directioni in incoming states (and likewise for
outgoing states’). In the Boltzmann approximation, the
probability of a states is the product of the corresponding
fractional occupation numbers, or their complements,

n

2
GL:(1+_

D)/\n+n,

If the quantity (1+2/D)n/(n+n,) is greater than the maxi-
mum value ofG, , then Galilean invariance is impossible for

those values oD, n, n,, andL; if it is less than this maxi- n-1 L-1 o L
mum, then there are two densities at which Galilean invari- Ps)= 1] 11 (Nk’d’)sk J (1_N'<'J’)1—Sk I
ance is achieved. Some of these values are tabulated for the k'=0j'=0

Frisch, Hasslacher, and Pomg#&iHP) and face centered hy-

percubic(FCHO) lattice gases in Table |. To get the total increase of particles in directigrwe take

the sum
L—-1
Q=2 270" =3 A(s—s')(s"'—5)
/=0

s,s’

VIII. VISCOSITY

To compute the viscosity of a ILGA in the Boltzmann

molecular chaos approximatiori3], we consider its n-1 L-1 . .
ensemble-averaged collision operafdt”. This quantity is x 1T 11 (Nk’,J’)s" J (1_Nk’,1’)1fsk v
the ensemble average of the increase irvbin directioni k'=0J'=0

due to collisions. It is given by where

L-1
Q=2 A(s—s')(s" =) P(s), s=> 275
/=0

s,s’
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is the total number of particles in directionin states (and
likewise fors’).

4143

is the total number of particles present in state
Inserting this result into the expression, £§.1), for the

To compute the viscosity, we must form the Jacobian maeollision operator, we obtain

trix of the collision operator. Direct calculation yields

&Qi/—ZA R (skJ—NkJ)
7~ 2 Al (S = P ey

n

> A(s—s') (s’ —s))

s,s’

i 1 (1—2

[ ——
“zF(2)\1-2

X[s*=F (2)]z"®.

We would like to evaluate this Jacobian at the equilibrium

given by Eq.(5.1),

1

N§/ =——;.
142492

0

Taking the derivative of this equation with respect to the

fugacity,

ON§/  2(297271 2NgI(1-Ng?)
0z [1+(2977P? z

As a consequence of conservation of probability, 8ql),
and semidetailed balance, Ed.2), it follows that the sec-
ond term in square brackets vanishes, so we finally get

JLz,; LZL nE A(s—s')(s'T—s')skzP®),
ZF(2)\1-2%2] &%

At first order in Knudsen number, the kinetic equation is

[4]
G- VNp=JiNJ,

we can use the chain rule to get the integer version of the

Jacobian of the collision operator at equilibrium,
L-1

=2

0 /,J=0

INKJ/ gZK
0 INK/ 9Z¥

Q)

_ P10
le /
K™ oNK

2 INKI

0

o K— Nk
=3 A(s—8)(8" =) Pyl

FE) 8.9

In fact, we need this result only in the limit of zero Mach
number, so we can use the lowest order expression for th
fugacity, 2=z (see Sec. V| which is independent of the
index k. We find that the zero Mach number limit of the

Boltzmann probability of stats is given by

n-1 L-1
A 1ot _ k'
Pos)=I1 II (N§/H="" (1-NE V)=
K'=07'=0
- p;/(s) ) n—p;/(s)
L-1 1 Ji 7 2J ']
JZo\1+27? 1+7°?

where

n—-1

pj(s)Eg0 sk’

is the total number of populated bits in tpgh binary digit. It
follows that

P(s)=

L-1 n/L-1
I1 (1+22J)‘1} (]‘[ z2’pj<5>)
J=0 J=0

n
= ( 11 ot Zp(s),
—Z

where

L-1

p(s)=>, 2/p,(s)
Jj=0

where there is an understood summation opemThe only
part of the left-hand side that contributes to the viscosity
comes from the second term on the right-hand side of Eg.
(6.3, whence

J'ijleizcici :vu.
Now, J is a singular matrix; it has a null eigenvector corre-
%Donding to each hydrodynamic mode of the system. These
null eigenvectors span what we shall call tiygdrodynamic
subspacef the system. The complement of this subspace is
called thekinetic subspacgeand is spanned by the kinetic
modes with nonzerénegative eigenvalue. If we restrict our
attention to the kinetic subspace, then we can form the
pseudoinverse of, denoted byl ™1, in terms of which we
may write

i 1 )
Nl_A_Z(J )JCjC] Vu.
The conservation law for momentum then contains the term

Ei (cG-VNi+3ccc:VVNL+---)

1 )
:V{A\_zliz Cici(‘]_l)}CjCj+%Ei CiCiCiCi}:(VU)]

i
4.
We note thatl ! is diagonalized and degenerate in the sub-

space spanned by threouter products of the lattice vectors
with themselves; that is

; (3 Hlge=—rea, (8.2

where\ is a scalar, whence the above term in the momentum
conservation equation becomes
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log (momentum} log {(momentum)

density=0.1, viscosity=0.61056 density=0.35, viscosity=0.233241

(a) (b)

time time
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
log {momenturm) log (momentum)
density=0.65, viscosity=0.224844 density=0.9, viscosity=0.621677

(c) (d)

me

ti time
s} 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000

FIG. 4. Time decay of shear-wave amplitude.

plotted as a function of density in Fig. 5, along with the
) curve predicted by the theory given above.

While the agreement with theory is good at intermediate
from which we identify the kinematic viscosity, values of the fractional occupation number near half-filling,
we note that it is seriously in error at logand high frac-

. tional occupation numbers. At present, we attribute this dis-
V= A—2(7\— 2). crepency to deviations from the Boltzmann molecular chaos
approximation, and we plan to investigate them using kinetic
The quantityx is then determined by taking the double spa-1ing theory[4] in a forthcoming publication.
tial dot product ofc,c; on both sides of Eq(8.2), and sum-

A

VA,

+...:V.

(=N+3)1,:(Vu)

A, .
A—z(—)\+§)Vu

ming overi to get IX. STATISTICAL NOISE
_ E i ) Finally, we consider the statistical noise of the ILGA
n=-A = Jj(ci- ¢, model. With the maximum number of particles per direction
' increasing as 2 one might naively expect the noise level to
whence decrease with. as 14/2F~2~2. Unfortunately, as we shall

show, this expectation is not realized, due to the extremely

N nzR(29\1-22) 5 &

X(G-¢j)?,

o
[

wheref=f (z) determines the parameterin terms of the
fractional occupation number. This result is easily seen to
reduce to that of Heon[12] whenL=1.

We computed the viscosity of dn=2 lattice gas in two
dimensions D =2) by measuring the decay of a shear wave
in periodic geometry. We used a lattice of size XB12 on .
a CAM-8 Cellular-Automata machinfd 3]. The probabilistic 0.2 —
collision procedure used obeyed semidetailed balance, with
each outgoing state allowed by the conservation laws 0
sampled with equal probability. Figure 4 shows the decay of
the shear wave amplitude to be exponential in nature, as is Fractional Occupation
appropriate for Navier-Stokes evolution. The time constant
of the exponential then determines the viscosity, which is FIG. 5. Viscosity vsf for L=2.

o
(=)

Kinematic Viscosity
o
=

0.2 0.4 06 0.8 1
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narrow dynamic range of the fugacity for largee This is
best seen in Fig. 1, in which the effective width of the func- 1
tion f_(z) nearz= 3 decreases like 2, making for a subtle

limiting process that is discussed in the Appendix. 808

Letn"”(x,t) be the precise value of bif in directioni at 2 06
lattice sitex at timet. The ensemble average of this quantity g '
is N"“, as used in the text of the paper. The mean number of B o4
particles in a(space-timgblock of N sites is then e

N n L1 02 /
Fi=2 2 X 2/(n(x))=nNF(2), ol
(xt T /=0 0.2 0.4 0.6 0.8 1

where the angle brackets denote the ensemble average. Fractional Occupation Number

The mean square of the number of particles in this block
of sites is then FIG. 6. AF_vs f for several values of.. The black curves

representL values from 1 to 4, increasing downward, while the

N N n n L-11L1-1 / gray curve is the limit ag —o.
FZZE 2 2 2 2 2 2/+/
(x,t) x't) i ir /=0 pr_

L o Since each site hasL bits, and therefore™ possible states,
X (x,Hnt (X)), and since the most popular lattices with the requisite isotropy
properties haven=6 andn=24, it is clear that the brute-

The bits are either zero or one, and in the Boltzmann Motqce approach in which a lookup table is used to store the
lecular chaos approximation different bits are uncorrelated. It jlision outcome states will not be feasible for much

follows that greater than unity.

. N i o, For this reason, we propose another sampling scheme for
(" 06Hn" () =(n () (n" 7 (X t) the outgoing states. Though the method we propose is com-

8, 081118y /,<ni,/(xit)> pletely general, we iIIus’Frate it for tr_le two-dimensional inte-

o T ger lattice gas on a triangular grich€6). Let n be an
x[l—(n"/(x,t)>], integer-valued columm-vector whose components are the
particle occupation numbers in each of the six directions.

whence Let us suppose that the mass and the two components of
Lol ooy o momentum are tlh.e only cqnserv_ed quantitigs. Since th_ese
Fom 241N 27z — P4nNzF (2) conserved quantitites are linear in the particle occupation
2771 v (1+22/)2 1 LA numbers, each of them corresponds to a row vector, whose

inner product withn yields the conserved quantity in ques-
It follows that the standard deviation of the number of par-tion. Thus, corresponding to the mass we have the row vec-
ticles in the block isyF,— 2. To define a fractional noise, t©OF
we could divide this by the mean number of particl&s,
but it preserves particle-hole symmetry if we instead divide it
by the square root of the product of the mean number of

a=(1 1 11 1 1,

particles and the mean number of holes, thus corresponding to the momentum(multiplied by a factor of
2), we have
A \/ Fom Py
=N AN - - 7] =2 1 -1 -2 -1 1),

3 1 zf{(2) and corresponding to the momentum(multiplied by a fac-
“ND Viian-fior 9P torof213), we have
=0 1 1 0 -1 -1

This appears to decrease exponentially Without it must be

noted that the logarithmic derivative 6f(z) goes as 2 at ) )
z=1. Since, for fixed fractional occupation numbgr, z  In fact, these row vectors are precisely thgdrodynamic

tends to} asL tends to infinity, we see that.F is order unity eigerjvectorsmentioned in our derivation of the viscosity;
in L. Thus, the fractional noise does decrease Wwithut not ~ thatis,

as rapidly as one might hope. It is plotted as a fraction of , i i .

1/\nN for several different values df in Fig. 6. Jk(01)*=J(d2) "= I (a3)“=0.

It is clear that these can always be chosen to be mutually

orthogonal, without loss of generality. Using the Gram-
Finally, we consider some practical considerations conSchmidt procedure, it is then possible to find three vectors

cerning the computer implementation of the ILGA model. spanning th&inetic subspaceorthogonal to the above; e.g.,

X. SAMPLING PROCEDURE
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Qp=2 -1 -1 2 -1 -1, the equilibrium distribution function, the entropy, the equa-

tion of state, the non-Galilean factor in the inertial term of
the fluid equations, and the statistical noise. We have thereby

shown that the ILGA model allows for the attainment of
and Galilean invariance, and a reduction in the kinematic viscos-
ity and the statistical noise. In future publications, we shall

g=(0 1 -1 0 1 -1 show that this generalization also allows for more straight-

o _ forward inclusion of interparticle interactions than the usual
Now the collision process takes statdo staten’. Since binary model.

it cannot change the values of the conserved quantities, it
follows that the difference betweeri andn must be a linear
combination of kinetic eigenvectors. That is, ACKNOWLEDGMENTS
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2T Uy a5+ g
n3_ a4+ a5~ (g

n’'= N+ 2a.—a . APPENDIX: THE INFINITE INTEGER LIMIT
4 4= 05

Ns— a4+ as+ ag To consider the limit of infinite integers,— o, we first

note that the fractional occupation number,
n6_ ayp— 05— Qg

Since the components af’ must all be between 0 and FL(2) 1 7 oLs2"
2-—1, inclusive, we derive the following six inequality con- fL(z)=5t =T — ol (A1)
straints: 2-—1 27—-1\1-z 122

L_
0<n;+2a,+as<2-1, has the limiting behavior

0= No—ay— a5+ (1’6$2L_ 1,

limf (z)=0,
O$n3—a4+a5—a6$2|‘_1, z=0
0<ny+2a,— ag<2-—1,
4ot TS limf (2)=%,
OSn5—a4+a5+a6S2L—1, z=1
oy — L_
0$n6 ap— Qg a’6$2 1. |Ime(Z):l

Z—®

These inequality constraints define a polytope in the three-

dimensional space of allowed values®f, a5, andag. We

know that this polytope must exist and contain the origin infor all L; here we have used L'Hutal’s rule to establish the

that space, sincex,=as=ag=0, corresponding to the resultforz— 1. Referring to Fig. 1, we note that the function

“trivial collision” in which the occupation numbers do not f,(z) becomes increasingly like a stepzat 1 asL—x. To

change their values, will always satisfy the constraints. verify this, we note that the width of the gradient there can
The collision process is then specified by a strategy fobe estimated by

sampling points from this polytope. It is possible, though

tedious, to derive a closed-form algorithm to do this, based ¢

on the above constraints. Details of this procedure will be |-mﬁzi

provided in a forthcoming publicatiofi4]. afl(z) 25+1

XI. CONCLUSIONS . .
which clearly goes to zero ds—o; once again we have

We have generalized the hydrodynamic lattice gas modelsed L'Hgital's rule to establish this result.
to include integer numbers of particles moving in each direc- The approach to a step function means that the entire
tion at each site. We have presented the thermodynamics amange of fractional occupation numbers is parametrized by
kinetic theory of this generalized integer lattice gas modelyalues ofz within order 2" from 1, asL—. That being
including closed-formior parametric algebraiequations for the case, we write
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Equations (A3) and (A4) constitute parametric algebraic
z=1+ ¢ (A2) equations, with parametsy, yielding AS, as a function of
the fractional occupation numbéy asL—«. These equa-
wherey is a new parameter of order unity. Note that thetions were used to produce the shaded curve in Fig. 2.
fractional occupation number is exactly 1/2 wher 0. In- Likewise, inserting Eq(A2) into Egs.(9.1), and taking
serting Eq.(A2) into Eq.(A1), we can now take the limit as the limit asL—, we find the fractional noise,

L—oo to get

i ar (1222 \/ y2—2cosly+2
im f 14 2] 1 1 (A3) ML—=A7L 2750 = N y2 2y sinhy + 2cosly— 2
L—oelL 2L 1_e—y y ' (AS)
Next, inserting Eq(A2) into Egs.(4.3) and(4.4), and taking  Equations (A3) and (A5) constitute parametric algebraic
the limit asL— o, we find the entropy excess, equations, with parametsr, yielding A, as a function of
o the fractional occupation numbéy asL—«. These equa-
. y _ € tions were used to produce the shaded curve in Fig. 6.
| = — Yy — _
I'mL_’wASL( oo In(1-e"") 1-e7Y Iny+1. Finally, inserting Eq(A2) into Egs.(7.1), and taking the
(A4) limit as L— o, we find theG, factor for a Bravais lattice,

1+

_2+(y*+2y—8)e'+(y*—6y+12e¥ +(y*—y>+6y—8)e¥—2(y—1)e¥

B [1-(y*+2)e'+e¥]? (A6)

lim _..G_

Equations(A3) and (A6) constitute parametric algebraic equations, with paramgteyielding G, as a function of the
fractional occupation numbd; asL —c. These equations were used to produce the shaded curve in Fig. 3.
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